Counterexample to a Problem on Tensor Product Approximation

Vilmos Totik*
Bolyai Institute, Szeged, Aradi v. tere 1, 6720 Hungary, and Department of Mathematics, University of South Florida, Tampa, Florida 33620, U.S.A.
E-mail: totik@math.usf.edu
Communicated by Manfred v. Golitschek

Received November 4, 1996; accepted in revised form June 4, 1997

Abstract

Answering a conjecture of M . von Golitschek in the negative, a compact set K is constructed on the plane such that not every continuous function on K can be uniformly approximated by continuous functions of the form $g(x)+h(y)$, and yet K does not contain a closed path of points with consequitive points connected with alternatively horizontal and vertical segments. © 1998 Academic Press

Let K be a compact set on the plane. It is a fascinating problemconnected with the geometry of K-to determine what continuous functions $F(x, y)$ on K can be approximated by tensor-sum functions of the form $g(x)+h(y)$ with continuous g and h (for tensor product spaces in general see [1], for many different applications of this type of approximation see the paper [2] by M. van Golitschek). In particular, when is it true that every continuous F on K can be uniformly approximated by such tensor sums? It is easy to see that if K contains a sequence of distinct points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{1}, y_{2}\right), P_{3}\left(x_{2}, y_{2}\right), P_{4}\left(x_{2}, y_{3}\right), P_{5}\left(x_{3}, y_{3}\right), \ldots, P_{2 k-1}\left(x_{k}, y_{k}\right)$, $P_{2 k}\left(x_{k}, y_{1}\right)$, i.e., for which the line segments $\overline{P_{j} P_{j+1}}\left(P_{2 k+1}=P_{1}\right)$ are alternatively vertical and horizontal, then there are functions F that are not approximable. In fact, it is enough to note that for any function $\mathscr{F}(x, y)=$ $g(x)+h(y)$ the sum

$$
\sum_{j=1}^{k}\left(\mathscr{F}\left(P_{2 j}\right)-\mathscr{F}\left(P_{2 j-1}\right)\right)
$$

is zero, so, e.g., if $F\left(P_{1}\right)=1$ and $F\left(P_{j}\right)=0, j=2, \ldots, 2 k$, then F cannot be approximated with error less than $1 / 2 k$ by any function $\mathscr{F}(x, y)$.

[^0]Let us call a sequence $P_{1}, \ldots, P_{2 k}$ with the above property a closed twisting path (closed means that from the last point we get back to the first one; and by "twisting" we are just referring to the vertical-horizontal property of the sequence). In [2] M. von Golitschek conjectured that the existence of a closed twisting path is the only obstacle that prevents approximation, i.e., he made the

Conjecture. If K does not contain a closed twisting path, then every continuous function on K can be uniformly approximated by functions of the form $g(x)+h(y)$ with continuous g and h.

In this note we show that this is not true. We should like to point out that if the continuity of the functions $g(x)$ and $h(y)$ are not required, then approximation (actually representation) is possible (provided there is no closed twisting path). In fact, let for $P, Q \in K$ be $P \sim Q$ if P can be reached from Q by a twisting path (not necessarily of even length). Then \sim is an equivalence relation, and points in different equivalence classes have different x and y coordinates. Therefore, it is enough to show that any function F is of the form $g(x)+h(y)$ on each equivalence class H. Let $P \in H$. Since there is no closed twisting path in K, every point in H can be reached from P via a unique twisting path. Along each such path we use the required identity $F(x, y)=g(x)+h(y)$ to define g and h, and the absence of closed twisting paths guarantees that this process will never yield contradictory values. Note that this procedure will generally result in unbounded g and h. This is not accidental, for a result of M. von Golitschek and W. A. Light [3] says that for continuous functions $f(x, y)$ approximation by tensor sums of the form $g(x)+h(y)$ with continuous g and h is equivalent to approximation by tensor sums of the form $g(x)+h(y)$ with bounded g and h.

We are going to construct a compact set K such that it does not contain a closed twisting path, yet it contains an infinite twisting path P_{1}, P_{2}, \ldots, P_{n}, \ldots, such that the distance between consecutive points P_{j} and P_{j+1} is at least 1 (note that without this second requirement a pair segment with one common endpoint and of inclination angle smaller than 90 degree would satisfy the requirements for K, but such a K is not appropriate for resolving the conjecture). After the construction we shall show that this is enough; the conjecture is not valid for this K.

Let C be the usual triadic Cantor set. The points of C can be uniquely written in base 3 in the form

$$
\alpha=0, \alpha_{1} \alpha_{2}, \ldots,
$$

where the digits α_{i} are 0 or 2 .
First we construct a continuous $f: C \rightarrow C$ bijection such that no iterant of f has a fixed point. Let, e.g., $f(1)=0$, and if in the triadic expansion of
α the first zero number is α_{n}, then let $f(\alpha)_{j}=0$ for every $1 \leqslant j<n, f(\alpha)_{n}=2$, and $f(\alpha)_{j}=\alpha_{j}$ otherwise. In other words, we annihilate the 2 's before the first zero, write 2 instead of the first zero, and leave all other digits unchanged. For example, $f(0)=2 / 3, f(1 / 3)=1$, and in general $f(x)=$ $x+2 / 3$ if $x \in[0,1 / 3] \cap C, f(x)=x-4 / 9$ if $x \in[2 / 3,7 / 9] \cap C$, etc. It is clear that f is continuous. It is also easy to see that f is a bijection of C onto itself. We show that no iterant of f has a fixed point.

Let the zero digits in the triadic expansion of $\alpha \in C$ be at the $\left(n_{1}+1\right)$ st $\left(n_{2}+1\right)$ st, etc., places (in this order), and first let us assume that there are infinitely many of them. Then

$$
\begin{aligned}
& \alpha=0, \overbrace{2 \cdots 2}^{n_{1}} 0 \alpha_{n_{1}+2} \cdots, \\
& f(\alpha)=0, \overbrace{0 \cdots 0}^{n_{1}} 2 \alpha_{n_{1}+2} \cdots, \\
& f(f(\alpha)):=f^{(2)}(\alpha)=0,2 \overbrace{0 \cdots 0}^{n_{1}-1} 2 \alpha_{n_{1}+2} \cdots, \\
& f^{(3)}(\alpha)=0,02 \overbrace{0 \cdots 0}^{n_{1}-2} 2 \alpha_{n_{1}+2} \cdots, \\
& f^{(4)}(\alpha)=0,22 \overbrace{0 \cdots 0}^{n_{1}-2} 2 \alpha_{n_{1}+2} \cdots, \\
& f^{\left(2^{n_{1}}\right)}(\alpha)=0, \overbrace{2 \cdots 2}^{n_{2}} 0 \alpha_{n_{2}+2} \cdots,
\end{aligned}
$$

therefore, the $\left(n_{1}+1\right)$ st digit in $f^{(j)}(\alpha)$ equals 2 for every $1 \leqslant j \leqslant 2^{n_{1}}$, while the same digit is 0 in the expansion of α, so for such j we have $f^{(j)}(\alpha) \neq \alpha$. Now

$$
\begin{gathered}
f^{\left(2^{n_{1}}+1\right)}(\alpha)=0, \overbrace{0 \cdots 0}^{n_{2}} 2 \alpha_{n_{2}+2} \cdots, \\
f^{\left(2^{n_{1}}+2\right)}(\alpha)=0,2 \overbrace{0 \cdots 0}^{n_{2}-2} 2 \alpha_{n_{2}+2} \cdots, \\
\vdots \\
f^{\left(2^{\left.n_{1}+2^{n_{2}}\right)}(\alpha)\right.}=0, \overbrace{2 \cdots 20 \alpha_{n_{3}+2} \cdots,}^{n_{3}},
\end{gathered}
$$

therefore the $\left(n_{2}+1\right)$ st digit in $f^{(j)}(\alpha)$ equals 2 for every $2^{n_{1}}<j \leqslant 2^{n_{1}}+2^{n_{2}}$, while the same digit is 0 in α, so for such j 's, $f^{(j)}(\alpha) \neq \alpha$. Continuing this procedure we obtain that $f^{(j)}(\alpha) \neq \alpha$ for any j.

If there are only finitely many zeros in the expansion of α, the argument is very similar.

Let now K consist of the graph of f and of the segments

$$
\overline{(2,0)(3,1)}, \quad \overline{(2,-2)(3,-1)}, \quad \overline{(0,-2)(1,-1)} .
$$

Let us denote these parts (in the given order) of K by K_{1}, K_{2}, K_{3}, and K_{4} (see Fig. 1). We shall see that this K is a set we are looking for.

First we show that K does not contain a closed twisting path. In fact, it follows by the fact that f is a bijection of C onto itself that any twisting part is uniquely determined once the starting point and the direction (horizontal or vertical) of the starting segment is given (if we start from K_{2}, K_{3}, or K_{4}, then it may happen that the path halts after one or two steps). It is easy to see that if P_{1}, \ldots, P_{m} is a twisting path for which $P_{j}\left(x_{j}, y_{j}\right) \in K_{1}$ and the $\overline{P_{j} P_{j+1}}$ segment is horizontal, then the x-coordinate of the point P_{j+4} coincides with the y-coordinate of the point P_{j}, that is, $x_{j+4}=y_{j}$. But

FIGURE 1
$y_{j}=f\left(x_{j}\right)$, therefore we arrive at the relation $x_{j+4}=f\left(x_{j}\right)$. Now the return of the path into itself would yield a fixed point of an iterant of f and there is no such fixed point. Similarly, if the segment $\overline{P_{j} P_{j+1}}, P_{j} \in K_{1}$ is vertical, then writing the sequence in reversed order we can apply the preceding argument.

Finally, we show that there is an infinite twisting path with consecutive points at least 1 apart. In fact, starting from any point of K_{1} we can go alternatively horizontally and vertically first to a point of K_{2}, then to a point of K_{3}, K_{4}, and finally again to a point in K_{1} (apply the above observation on the coordinates of P_{j} and P_{j+4}, and the fact that f maps the Cantor set into itself); and from here the procedure can be iterated resulting in an infinite twisting path.

Finally, let $F(x, y)=1$ on K_{1}, and $F(x, y)=0$ on $K_{2} \cup K_{3} \cup K_{4}$. We claim that for $\varepsilon=1 / 5$ there is no function $\mathscr{F}(x, y)=g(x)+h(y)$ that is closer than ε to $F(x, y)$ in the supremum norm on K. In fact, suppose

$$
|F(x, y)-\mathscr{F}(x, y)| \leqslant \frac{1}{5}
$$

for all $(x, y) \in K$. Let $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), \ldots$ be the infinite twisting path starting from K_{1} considered above. Then $P_{4 k+1} \in K_{1}$ for all k, and

$$
\mathscr{F}\left(P_{4(k+1)+1}\right)-\mathscr{F}\left(P_{4(k+1)}\right)+\mathscr{F}\left(P_{4(k+1)-1}\right)-\mathscr{F}\left(P_{4(k+1)-2}\right)
$$

differs from

$$
F\left(P_{4(k+1)+1}\right)-F\left(P_{4(k+1)}\right)+F\left(P_{4(k+1)-1}\right)-F\left(P_{4(k+1)-2}\right)=1
$$

by at most $4 / 5$, so

$$
\mathscr{F}\left(P_{4(k+1)+1}\right)-\mathscr{F}\left(P_{4(k+1)}\right)+\mathscr{F}\left(P_{4(k+1)-1}\right)-\mathscr{F}\left(P_{4(k+1)-2}\right) \geqslant \frac{1}{5} .
$$

However, this last expression is nothing else than

$$
h\left(y_{4(k+1)+1}\right)-h\left(y_{4(k+1)}\right)+h\left(y_{4(k+1)-1}\right)-h\left(y_{4(k+1)-2}\right),
$$

and we also know that

$$
y_{4(k+1)}=y_{4(k+1)-1} \quad \text { and } \quad y_{4(k+1)-2}=y_{4 k+1},
$$

therefore we finally arrive at

$$
h\left(y_{4(k+1)+1}\right)-h\left(y_{4 k+1}\right) \geqslant \frac{1}{5} .
$$

By adding these together for $k=0,1, \ldots, N-1$ we obtain

$$
h\left(y_{4 N+1}\right)-h\left(y_{1}\right) \geqslant \frac{N}{5},
$$

which for $N \rightarrow \infty$ is in a clear contradiction to the boundedness of the function h.

This contradiction proves that F cannot be approximated.

REFERENCES

1. W. Cheney and W. A. Light, "Approximation Theory in Tensor Product Spaces," Lecture Notes in Mathematics, Vol. 1169, Springer-Verlag, New York, 1985.
2. M. von Golitschek, Shortest path algorithms for the approximation by nomographic functions, in "Anniversary Volume on Approximation Theory, Proc. Conf. Oberwolfach, 1983" (P. L. Butzer, R. L. Stens, and B. Sz-Nagy, Eds.), ISNM, Vol. 65, pp. 281-301, BirkhäuserVerlag, Basel/Boston/Stuttgart, 1984.
3. M. von Golitschek and W. A. Light, Approximation by solutions of the planar wave equation, SIAM J. Numer. Anal. 29 (1992), 816-830.

[^0]: * Research was supported in part by the National Science Foundation, DMS-9415657 and by the Hungarian Academy of Sciences, Grant 96-328.

